
Reproduction attempt of E.T.: re-thinking self-attention for transformer models on
GPUs paper

Krishna Panthi
School of Computing, Clemson University

Clemson, South Carolina, USA
Email: kpanthi@clemson.edu

Abstract—Transformer models have become ubiquitous in nat-
ural language processing (NLP) and are increasingly being
used in other domains like computer vision. However, their
large size and computational demands pose significant chal-
lenges for deployment, particularly in resource-constrained
environments. This project focuses on reproducing and extend-
ing the work presented in ”E.T.: Re-Thinking Self-Attention
for Transformer Models on GPUs” [1]. This original paper
introduces a novel way of implementing self-attention and
an attention-aware pruning algorithm to accelerate inference
on GPUs. This report details the efforts to reproduce the
alternative self-attention mechanism and the tile-based prun-
ing process, along with preliminary experimental results and
analysis. The study confirms the potential of the proposed
techniques to improve the efficiency of Transformer models
and recommends further research to optimize these models
for various hardware platforms.

1. Introduction

The advent of Transformer models [2] has revolutionized
the field of natural language processing (NLP), achieving
state-of-the-art results in a wide range of tasks, including
machine translation, text summarization, and question an-
swering. Transformers rely solely on a mechanism called
self-attention to capture relationships between words in a
sequence. This approach enables parallel computation and
improved performance, particularly on long sequences. Self-
attention is increasingly being used in other domains as well,
such as for image generation tasks with diffusion models,
in graph neural networks, and elsewhere.

Despite their success, Transformer models suffer from
two major drawbacks: their gigantic model size and pro-
longed turnaround time. These challenges stem from the
quadratic computational complexity of the self-attention
mechanism with respect to the sequence length and the large
number of parameters in these models. For instance, models
like BERT [11] and GPT-3 [3] have hundreds of millions or
even billions of parameters, making them difficult to deploy
on resource-constrained devices.

To address these challenges, Chen et al. [1] introduced
”E.T.” in their paper, E.T.: Re-Thinking Self-Attention for
Transformer Models on GPUs, which proposes a novel self-

attention implementation mechanism and an attention-aware
pruning algorithm designed to accelerate inference on GPUs.
This project aims to reproduce a subset of the experiments
presented in the original paper, specifically focusing on the
alternative self-attention implementation and the tile-based
pruning process.

The input to Transformers is an array of tokens. These
tokens are mapped to representative embeddings with posi-
tional encodings. This process results in a matrix, denoted
as X ∈ RL×d, where L is the sequence length and d is the
embedding dimension. For single-head attention, the query,
key, and value matrices are computed as:

Q = X ·WT
Q, K = X ·WT

K , V = X ·WT
V

with learnable weights WQ,WK ,WV ∈ Rdk×d. The at-
tention output for a head is calculated as

Z1 = Attention(Q,K,V) = softmax
(
Q ·KT

√
dk

⊙M

)
·V

where ⊙ represents element wise matrix multiplication and
M is a mask to prevent attending to specific tokens (e.g.,
future tokens in causal attention). We have Z1 ∈ RL×dk . For
multi-head attention, outputs from n heads, Z1,Z2, . . . ,Zn,
are concatenated along the embedding dimensions to obtain
Z ∈ RL×(n·dk):

Z = Concat(Z1,Z2, . . . ,Zn)

Finally, the output of the multi-head attention is computed
as:

Output = Z ·WT
O

where WO ∈ Rd×(n·dk) is a learnable projection matrix.
Usually, when attention is implemented in code, it is

implemented in a modular way following the principles of
software engineering. This design leads to two performance
issues: (i) during consecutive matrix multiplication, one has
to transfer the output of one operator to another in the GPU
global memory, and (ii) this switching of operators intro-
duces on- and off-chip data movement. Problem (i) has been
solved via kernel fusion by NVIDIA’s TensorRT. However,
the second issue remains since TensorRT cannot change
operator implementation. This paper solves this problem
by implementing attention in a single operator. Here, an
operator means a CUDA kernel.



Figure 1. On the fly attention mechanism introduced by the paper [1].
The paper proposes steps (2), (3), (4), (5) and (6) to be done sequentially
without swapping the shared memory. The figure shows a sequence of three
tokens, four features per token and two heads each of which represented
by a thicker border box.

2. Methods

This project focused on reproducing two key aspects of
the E.T. paper:

2.1. Alternative Self-Attention Implementation

The original E.T. paper [1] proposes an optimized on-
the-fly self-attention operator that performs five operations
(matrix multiplications, scaling, masking, softmax, and an-
other matrix multiplication) in a single GPU kernel. The
overall optimized process is shown in figure 1. While
computing self attention, after Q,K and V matrices are
computed, in step (2) the scaling by 1√

dk
is done on Q

before further computation unlike in a normal implementa-
tion where this is done after matrix multiplication. This is
done to avoid floating point overflow and it enables to fully
use FP16 (half precision) for all operations. In the third step,
matrix multiplication is performed between a subset rows of
Q and K matrix. Here a set of rows from a head of Q are
stored in shared memory, and a head of K is loaded from
global memory to calculate intermediate result Q1·KT

1√
dk

which
is stored in shared memory. Then within the shared memory,
masking and softmax calculations are done from that subset
of rows. Finally corresponding head of V is loaded from
global memory to compute a set of rows of Z. This approach
reduces data movement between global memory and shared
memory/registers, leading to significant performance gains.

The above approach has a limitation: as the sequence
length, i.e., the number of columns in one head of K,
increases, it may not be possible to load the entire matrix
into shared memory to perform matrix multiplication in
steps 3 and 6. In such cases, E.T. processes the computation
in parts by first loading the first column of Q and the first
row of KT to compute partial results for the entire Q1K

T
1 .

Subsequently, it processes the follow-up columns of Q1 and
rows of KT

1 . This design ensures that Q1 and K1 are loaded
only once. However, it requires scheduling the entirety of
the GPU to perform this computation, writing the results to
global memory, performing global synchronization, and then
loading one row of Q1K

T
1 into shared memory for masking,

softmax, and eventual multiplication with V. Matrix multi-
plication is performed using outer product. This results in
drop in performance, a limitation observed in experiments
as the sequence length increases.

2.2. Tile-Based Pruning

The proposed attention-aware tile-based pruning
methodology compresses Transformer models by
strategically removing tiles (sub-matrices) from the
weight matrices of the self-attention mechanism. This
process involves four stages: partitioning weight matrices
into non-overlapping tiles, calculating tile importance using
attention-aware metrics, pruning low-importance tiles based
on a threshold, and retraining the pruned model to restore
accuracy. The weight matrices WQ, WK , and WV are
divided into tiles of a predefined size (e.g., 16x16), aligning
with hardware architecture for optimal performance. Tile
importance is quantified using an L2 norm-based metric,
calculated as the square root of the sum of squares of all
elements within the tile, providing a measure of the tile’s
overall magnitude. This metric is further refined with re-
weighted group lasso regularization during training, which
adds a penalty term to the loss function that is proportional
to the L2 norm of each tile, effectively encouraging less
critical tiles to have smaller magnitudes and thus be more
likely candidates for pruning. This regularization helps
to identify and eliminate tiles that contribute less to the
model’s overall performance, improving efficiency without
significant loss of accuracy. Pruning is achieved by setting
low-importance tiles to zero, targeting a specific sparsity
level while controlling the trade-off between compression
and accuracy.

After pruning, a retraining phase compensates for ac-
curacy loss by fine-tuning the remaining non-zero weights
while keeping pruned tiles fixed at zero. This process en-
sures the model adjusts effectively to the reduced struc-
ture. By using structured tile pruning, the method main-
tains hardware-friendly regularity, reducing computational
and memory demands while preserving accuracy. These
advantages make attention-aware tile-based pruning particu-
larly suited for deploying Transformer models on resource-
constrained devices, achieving significant compression with-
out sacrificing performance.

3. Experiments

Evaluation platforms. Our Training and Evaluation are
performed on Python 3.6.13 and CUDA 11.2 on V100S
GPU and Intel(R) Xeon(R) Gold 6238 @ 2.20GHz CPU on
Palmetto Cluster. The model is trained with PyTorch 1.10.2,



and the source code of our implementation is compiled with
NVIDIA nvcc 11.2 and GCC 8.5.0.

Making code work on Palmetto: The original paper
utilized PyTorch 1.4.0 and GCC 7.5.0, but since this Py-
Torch version is no longer available through Conda channels
or Python pip, we migrated the code to PyTorch 1.10.2.
While the core PyTorch code remained unchanged, other
dependencies, such as the Transformers package, required
updates to newer versions that introduced breaking changes.
This necessitated extensive code modifications. Addition-
ally, configuring the experimental platform with a different
CUDA version, unavailable through standard modules, was
time-consuming to set up.

3.1. Self-Attention Performance Evaluation

For this experiment, a Transformer model with 12 en-
coder layers was trained on the WikiText-2 [3] dataset.
The model was implemented and trained using PyTorch.
Subsequently, inference evaluations were conducted using
the author’s CUDA/C++ single-kernel implementation of
the attention mechanism. The primary objective of this
experiment was to assess the performance of the alternative
self-attention implementation kernel and compare the results
with the claims made in the original paper. Using NVIDIA’s
nvprof profiler, following metrices were collected on the
implemented kernel:

Memory Throughput: Analyzing the global memory
read and write throughput to assess the efficiency of data
movement.

Memory Transactions: Analyzing the global memory
read transactions and write transactions. Transactions are a
measure of latency and overhead associated with memory
access. And a lower value is more preferred.

SM Occupancy: It measures the utilization of streaming
multiprocessors (SMs) on the GPU. It gives the percentage
of active Warps at any given time.

Instructions Per Cycle (IPC): IPC measures the aver-
age number of instructions that are executed by the kernel
in each clock cycle.

These metrics were collected for sequence lengths of
64, 128, 292, 256, 320 and 364 for batch size = 1 to
understand the performance characteristics of the alternative
implementation similar to the original paper.

3.2. Pruning Impact on Performance and Accuracy

This experiment aimed to assess the impact of tile-based
pruning on the model’s performance and accuracy. The
experiments were conducted with a pre-trained BERT base
model. The operation was text classification. We first fine-
tuned the model using Microsoft Research Paraphrase Cor-
pus (MRPC) dataset from General Language Understanding
Evaluation (GLUE) benchmarks. The following steps were
performed:

Model fine-tuning: In this step, the pre-trained
BERT base model was subjected to fine-tuning process
using the MRPC dataset. This involved adjusting model’s

parameters through training on the labeled examples in the
MRPC dataset, thereby optimizing its performance for the
paraphrase identification task. The model was fine-tuned for
4 epochs with batch size of 32.

Re-weighted training: In this step, certain percentage of
tiles (30% to be exact) within the model’s weight matrices
were encouraged to converge towards lower L2 norms. Here,
training process was modified to include the re-weighting
mechanism. The objective function during training was al-
tered to incentivize these selected tiles to minimize their L2
norm during the parameter updates. Here, as well, model
was trained for 4 epochs with batch size of 32.

Prune and re-weighted training: In this step, based
on the results of the re-weighted training in the previous
step, the tiles exhibiting the lowest L2 norms were pruned
from the model. After pruning operation, the reduced model,
now with a smaller number of parameters, was subjected
to another round of re-weighted training. It solely focused
on the unpruned weights, allowing the model to adapt and
compensate for the removal of the pruned weights. Here, as
well, the model was fine-tuned for 4 epochs with batch size
equal to 32. The pruning ratio was kept at 0.3 i.e. 30% of
weights were pruned.

F1 score, an approximate harmonic mean of precision
and recall, provides a balanced measure of the model’s
classification accuracy. F1 score was calculated along with
the overall accuracy which represents the percentage of
correctly classified instances in the MRPC dataset.

4. Results

The results obtained after profiling the optimized kernel
are presented in Figure 2 and Figure 3. Figure 2 shows
the Stream Multiprocessor(SM) efficiency, Instructions Per
Cycle (IPC), Global memory store (GST) transactions and
Global memory load (GLD) transaction results we obtained
vs the results obtained by authors. The results suggest that
the optimized performance is considerably higher than the
baseline. We can observe this for the SM efficiency. We
observe better SM efficiency (higher) and gst transactions
(lower) compared to their result. But when sequence length
is increased beyond 320, the performance drops as ob-
served in the graph. This is because step 3 and 6 cannot
be computed as shown in figure 1. The kernel resorts to
matrix multiplication via outer product as discussed in the
methodology, hence resulting in drop in performance. The
IPC result is comparable to the author’s results. The number
of gld transactions is higher in our experimental results than
in the author’s.

Similarly, results for the memory throughput are shown
in Figure 3. The paper suggests that they were able to
achieve 311 GB/s gld throughput for attention computation
for sequence length of 128. We observe approximately the
same throughput for that sequence length in the graph. The
throughput increases gradually with increase in sequence
length and drops as it goes past a certain threshold as the
method resorts to using outer product for matrix multiplica-
tion on step 3 and 6.



(a) SM efficiency (ours) (b) IPC (ours) (c) gst transaction (ours) (d) gld transactions (ours)

(a) SM efficiency (b) IPC (c) gst transaction (d) gld transactions
Figure 2. Our result (first row) vs their results (second row) against TensorRT implementation from the paper from profiling of the optimized attention
kernel. Our experiments were conducted using sequence length of 64, 128, 192, 256, 320 and 384.

(a) gld throughput (b) gst throughput
Figure 3. The results of computing global memory read throughput (gld throughput) and global memory write throughput (gst throughput) for the kernel
using sequence length of 64, 128, 192, 256, 320 and 384.

Figure 4. The evaluation results of the BERTBASE model on the MRPC
dataset from the GLUE benchmark are presented for the pretrained model,
fine-tuned model, re-weighted model, and pruned model.

The results of the pruning experiment we conducted are
shown in Figure 4. It displays the F1 and accuracy scores
for the BERTBASE model on the MRPC dataset from the
GLUE benchmark. We can observe that when the model is
pruned the F1 score decreases from 0.986 to 0.780. This is
when pruning ratio is 0.3. This is a considerable loss. This
result is after 4 epochs of re-training. We need to perform
more experiments to draw a reliable conclusion.

5. Issues faced and Limitations of this report

This project faced significant challenges in reproducing
the experiments presented in the E.T. paper [1]. These
challenges primarily stemmed from the incomplete and non-
functional nature of the codebase provided by the origi-
nal authors. The publicly available code repository lacked
crucial components of their implementation, and the ex-
isting code was not directly executable. Consequently, a
considerable amount of time was dedicated to setting up
the appropriate environment and modifying the codebase
to achieve a working state. Due to these initial hurdles,
the experiments conducted as part of this project are not
as comprehensive as originally intended. Therefore, it is
difficult to draw definitive conclusions that directly parallel
the findings of the E.T. paper.

Furthermore, most experiments in this project were per-
formed using a custom transformer model provided within
the author’s codebase. This differs from the original paper,
which utilizes the BERT base model for its primary ex-
periments. The use of different models introduces a critical
discrepancy, making direct comparisons between the results
of this project and those of the E.T. paper unreliable. This
project should be viewed as an exploratory study that at-



tempted to implement the core ideas presented in the E.T.
paper, rather than a strict, verifiable reproduction of the
original work.

6. Limitations of original paper and Further
Research

While the E.T. paper presents a novel approach to self-
attention optimization, it exhibits certain limitations that
warrant further investigation. As noted in the results section
of the E.T. paper and corroborated by our findings, their
custom implementation does not yield significant efficiency
gains when processing long sequences. This performance
degradation, attributed to limitations in shared memory us-
age, represents a major bottleneck that needs to be addressed
in future work. Research should focus on developing strate-
gies to mitigate this issue, potentially through techniques
like more advanced tiling or hybrid approaches combining
fused-kernel operations with optimized outer product com-
putations for longer sequences. Although attention-aware
pruning is a notable strength of the paper, the exploration of
pruning techniques is primarily confined to weight pruning.
Future research could investigate other pruning methods,
including attention head pruning and structural pruning,
which involves removing entire layers or filters. This broader
exploration could potentially lead to further improvements in
model efficiency and compression. The current implementa-
tion relies on FP16 precision for all operations. Investigating
mixed-precision approaches, incorporating INT8 and FP16,
could potentially enhance efficiency without substantial per-
formance degradation. Moreover, the implementation is tai-
lored specifically for Nvidia GPUs. Extending the research
to other hardware platforms, such as Apple M-series chips
and AMD GPUs, would broaden the applicability of the pro-
posed techniques. The current attention implementation is
limited to inference. Extending the optimized self-attention
mechanism to support efficient training would be a valuable
contribution. The original paper, as well as this reproduc-
tion attempt, primarily evaluates performance with a batch
size of 1. Future research should explore the performance
implications of using larger batch sizes, which are more
representative of real-world deployment scenarios.

7. Conclusion

Replicating a subset of experiments from the E.T. pa-
per [1], this project explored an alternative self-attention
mechanism and tile-based pruning for Transformer models.
Our initial results affirm the potential of the on-the-fly self-
attention operator to significantly improve GPU efficiency
through reduced data movement and increased parallelism.
We also observed a trade-off between model size reduction
via tile-based pruning and the consequent accuracy drop,
indicating a need for further investigation. Additionally, we
presented the issues faced in replicating this work, the limi-
tations of this implementation with longer sequence lengths,
and potential further research directions.

References

[1] S. Chen, S. Huang, S. Pandey, B. Li, G. R. Gao, L. Zheng, C. Ding,
and H. Liu, “E.t.: re-thinking self-attention for transformer models
on gpus,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’21. New York, NY, USA: Association for Computing Machinery,
2021. [Online]. Available: https://doi.org/10.1145/3458817.3476138

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
2023. [Online]. Available: https://arxiv.org/abs/1706.03762

[3] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” 2016.


